Composite “zigzag” structures in the 1D complex Ginzburg-Landau equation

نویسندگان

  • Mads Ipsen
  • Martin van Hecke
چکیده

We study the dynamics of the one-dimensional complex Ginzburg Landau equation (CGLE) in the regime where holes and defects organize themselves into composite superstructures which we call zigzags. Extensive numerical simulations of the CGLE reveal a wide range of dynamical zigzag behavior which we summarize in a “phase diagram”. We have performed a numerical linear stability and bifurcation analysis of regular zigzag structures which reveals that traveling zigzags bifurcate from stationary zigzags via a pitchfork bifurcation. This bifurcation changes from supercritical (forward) to subcritical (backward) as a function of the CGLE coefficients, and we show the relevance of this for the “phase diagram”. Our findings indicate that in the zigzag parameter regime of the CGLE, the transition between defect-rich and defect-poor states is governed by bifurcations of the zigzag structures. PACS: 05.45.Jn, 47.54.+r, 05.45.Pq

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Some new exact traveling wave solutions one dimensional modified complex Ginzburg- Landau equation

‎In this paper‎, ‎we obtain exact solutions involving parameters of some nonlinear PDEs in mathmatical physics; namely the one-‎dimensional modified complex Ginzburg-Landau equation by using the $ (G'/G) $ expansion method‎, homogeneous balance method, extended F-expansion method‎. ‎By ‎using homogeneous balance principle and the extended F-expansion, more periodic wave solutions expressed by j...

متن کامل

Exact solutions of the 2D Ginzburg-Landau equation by the first integral method

The first integral method is an efficient method for obtaining exact solutions of some nonlinear partial differential equations. This method can be applied to non integrable equations as well as to integrable ones. In this paper, the first integral method is used to construct exact solutions of the 2D Ginzburg-Landau equation.

متن کامل

Twisted vortex filaments in the three-dimensional complex Ginzburg-Landau equation.

The structure and dynamics of vortex filaments that form the cores of scroll waves in three-dimensional oscillatory media described by the complex Ginzburg-Landau equation are investigated. The study focuses on the role that twist plays in determining the bifurcation structure in various regions of the (alpha,beta) parameter space of this equation. As the degree of twist increases, initially st...

متن کامل

Hole-defect chaos in the one-dimensional complex Ginzburg-Landau equation.

We study the spatiotemporally chaotic dynamics of holes and defects in the one-dimensional (1D) complex Ginzburg-Landau equation (CGLE). We focus particularly on the self-disordering dynamics of holes and on the variation in defect profiles. By enforcing identical defect profiles and/or smooth plane wave backgrounds, we are able to sensitively probe the causes of the spatiotemporal chaos. We sh...

متن کامل

Coherent and Incoherent structures in systems described by the 1D CGLE: Experiments and Identification

Much of the nontrivial dynamics of the one dimensional Complex Ginzburg-Landau Equation (CGLE) is dominated by propagating structures that are characterized by local “twists” of the phase-field. I give a brief overview of the most important properties of these various structures, formulate a number of experimental challenges and address the question how such structures may be identified in expe...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2001